Agenda

- Introduction
- Background
- Two common pitfalls
- Case studies:
 - Miami Dade garage collapse
 - NYC Gap Analysis
- Questions, discussion

Introduction: Jeffrey Garrett, Ph.D., S.E.

- Educated at Iowa State University
- 23-year career in structural design, management
 - Single family residences to 50 story buildings
 - Constructed value nearly \$2 billion
- 17-year career in structural forensics
 - Investigated a variety of structures
 - Constructed with a variety of materials
- Member of ASCE, SEAOI, AISC, ACI, ABA

Agenda

- Introduction
- Background
- Two common pitfalls
- Case studies
 - Miami Dade garage collapse
 - NYC Gap Analysis
- Questions, discussion

Structural forensic engineering

Forensic engineering

- Name given to the activity of failure investigation
- Implies presentation of findings in litigation

Forensic engineering in construction

- Most cases involve lazy mistakes
- 90% of cases typically settle prior to litigation
- Process is still costly in terms of time & dollars

Failure defined

Failure

Condition of not meeting an intended objective

Examples of failure

- Serviceability
 - Excessive deflection and/or vibrations
- Durability
- Structural distress
- Partial or total collapse

Sources of failure

- Fundamental conceptual errors
- Design errors, omissions
- Fabrication, manufacturing defects
- Construction defects
- Materials defects
- Operational errors

Sources of construction litigation

Source: US Government Services Administration

Litigation is big business

American Bar Association estimates that:

- Consulting structural engineering firms
 - Almost 50% named in a suit
- Structural engineers
 - 1 in 10 will be personally named

Litigation is big business

Estimates by American Society of Civil Engineers:

- Annual claims against member companies
 - Exceeds \$5 billion annually
- This figure is based on insurance estimates
 - Underestimates actual amounts
 - Most settlements never made public

Litigation is big business

- Total costs to defend a claim include:
 - Non-billable time, lost revenue
 - Legal fees, expert fees
 - PLUS the amount of any claim settlement
- Immeasurable consequences include:
 - Damaged reputation
 - Ability to market
 - Impact to future business

Agenda

- Introduction
- Background
- Risk management: two common pitfalls
- Case studies:
 - Miami Dade garage collapse
 - NYC Gap Analysis
- Questions, discussion

Risk management

Two key areas that need improvement:

- Contractual language
 - The engineer had signed a bad contract
 - Engineers make for bad negotiators
- Maintain good records
 - Keep your house in order

Contract clauses that receive the most attention:

- Scope of Work
- Standard of Care
- Limitation of Liability
- Indemnification

These are the clauses your clients will attempt to modify to their benefit

Contract clauses that receive the most attention:

- Scope of Work
 - Establishes legal obligations
 - This is the work to be performed
 - Sets the standard of care for services rendered
 - Insist that the scope be sufficiently detailed
 - First document to be reviewed in a suit

Contract clauses that receive the most attention:

- Standard of Care
 - "The work will be performed to the highest standard......"
 - Sets an unnecessary high standard
 - Higher than what is normally expected
 - Sets the bar on how you will be judged

Contract clauses that receive the most attention:

- Limitation of Liability
 - Endeavor to limit your liability to the value of the fee or some dollar value
 - Include language that limits your liability to only those actions you have control over
 - However, you cannot limit your liability if litigation was caused by your negligence

Contract clauses that receive the most attention:

- Indemnification
 - Include language that indemnifies you from third party law suits
 - You have no control over their actions
 - Include language that requires client to defend you in the event of a third party law suit

Activities that should be business as usual:

- Files to be maintained indefinitely include:
 - Proposals
 - Contract negotiation notes
 - Scope of work
 - Schedule
 - Draft contracts
 - Executed contracts

Activities that should be business as usual:

- Recommend you maintain project files:
 - The sum of:
 - Time set by Statue of Limitation

Plus

• Time set by Statue of Repose

Activities that should be business as usual:

- Statute of Limitation:
 - Bars action after a fixed period of time
 - Regardless of whether damage or injury has been discovered during that period
- Statute of Repose:
 - Bars causes of action after a fixed period of time following discovery of an error

Activities that should be business as usual:

- Maintain the calculation file
 - Will calc's make sense to a stranger in 10 years?
 - Keep only calc's that define completed project
 - Follow office policy and procedure:
 - Sequentially number, check and initial each sheet

Activities that should be business as usual:

- Establish a written retention policy and follow it
 - No matter how long records are to be retained:
 - Follow the retention policy strictly
 - Avoids any question of impropriety when a project ends up in litigation
 - Produce all documents according to the retention policy

Agenda

- Introduction
- Background
- Risk management: two common pitfalls
- Case studies
 - Miami Dade garage collapse
 - NYC Gap Analysis
- Questions, discussion

Front page projects

- I-35W bridge collapse, Minneapolis
- Big Blue crane collapse, Milwaukee
- Tropicana parking garage collapse
- Big Dig roof collapse, Boston

Most projects don't even make the news

- Structural failure, collapse
- Distress, performance issues
- Design or construction defects
- Materials failures, performance issues
- Standard of care, delays, loss of use & business

- Parking garage under construction
- Precast concrete construction
 - Nearly complete with precast erection
- 5 supported levels
 - Grade, Level 1
 - Roof, Level 6

Dead weight applied to Column B3 at collapse:

- Unfactored P = 900 kips
 - Unfactored stress in concrete = 1.0 k.s.i.
 - Not excessive for f'c = 9,000 p.s.i.
- Attention turned to the crane
 - The crane had bumped Column B1

The "crane accident" theory

- Boom had contacted Column B1
 - Incident had occurred 3 days earlier
- Theory: Structure at point of incipient collapse
- Crane had been inspected for damage
 - Was returned to service
- Contact left paint marks on Column B1
 - No additional damage to column was found

Column B3

- Almost 5-feet of column base was missing
- Reinforcing was splayed out
- Specific shape to the failure surface

Column B3

• Specific shape to the failure surface

Column B3 base

Theory: Failure of Column B3 initiated collapse

- Facts:
 - No grout installed
 - Column rested on 8-inch square shims
 - Stress in column = 1.0 k.s.i.
 - Stress transferred to shims = 14.0 k.s.i.
 - Exceeds design f'c by 5.0 k.s.i.
- Why didn't the failure occur sooner?
Miami Dade College parking garage collapse

- Tested aggregate, cement, concrete:
 - Aggregate susceptible to creep
- Found micro-cracking of the concrete
 - Took time to form, coalesce
 - Failure planes perpendicular to major stress
- Confinement of column base by column ties
- Micro-cracking occurs until failure plane forms
 - Bottom 5-feet of Column B3 disappeared

jlgconsultingllc

Miami Dade College parking garage collapse

Miami Dade College parking garage collapse

NYC DOB retained CTLGroup

- Rash of construction accidents
 - Prompted action by the Mayor
- Objective:
 - Perform a GAP analysis of current practice
 - Make recommendations
 - Modify code, if needed

High rise construction observations

- HRCO concrete team:
 - Established data base of site conditions
 - Total sites visited: 181 site observations
- Quality & formwork data based on:
 - Subset of 98 active construction sites
 - Each inspected by P.E.

High rise construction observations

- Site distribution:
 - 49 union sites (50%)
 - 41 non-union sites (42%)
 - 8 unknown affiliation (8%)

High-rise Concrete Areas of Interest

Worker Falls

Formwork Issues

General Site Safety Special Inspection and Construction Quality

High-rise Concrete Formwork Issues

High rise concrete formwork issues

- Observed inadequacies:
 - Incomplete design specifications
 - Improper installation and sequencing
 - Damage due to wind

High rise concrete formwork issues

HRCO Observed Defects

	All Projects
Sample Size	98
Number of Critical Formwork Defects	57 (58%)

High rise concrete formwork issues

Critical formwork defects:

- No stamped formwork design (per NYC Code)
- Formwork construction not in conformance to design
- Premature stripping or premature reshore removal
- Insufficient number of reshored floors (per design)
- Insufficient number of shored floors (per design)

Formwork failures due to wind Leading edge formwork failure:

- Reported winds of 30-40 mph
- 808 Columbus, Manhattan
- June 11, 2008

Leading edge formwork failure:

- Reported winds of 30-40 mph
- 469 West Street, Manhattan
- March 9, 2008

Historic Wind Incidents

Address	Boro.	Incident Date	Description
Jay Street	Brooklyn	7/24/2006	Wind dislodged several deck panels from formwork on 27th floor.
Broadway	Manhattan	7/12/2006	Wind dislodged vertical column formwork from upper floor
Spring St.	Manhattan	12/23/2007	Wind Dislodged Shoring Element from the 39 th Floor
11 th Ave	Manhattan	10/22/08	Wind Dislodged (2) 3x4 timber posts from 16 th floor. Leading Edge deck lifted

Formwork recommendations

- 1. Require that essential specification be included on stamped formwork designs
 - Reshoring sequences and schedules
 - Required numbers of reshored floor levels
 - Clear information regarding:
 - Spacing and layout
 - Lumber grade and design strengths

Formwork recommendations

- 2. Require regular inspection of formwork and reshore installations by formwork designer
 - Structural layout of formwork system
 - Structural integrity, individual members & system
 - General conformance with essential specifications

Formwork recommendations

- 3. Incorporate national design standards for temporary construction
 - ASCE 37, Temporary Construction
 - ASCE 7, Wind load criteria
- 4. Require formwork construction to be positively secured against uplift
 - Perimeter decking
 - Provide positive load path to slab

High-rise Concrete General Site Safety

Observed defects, violations

- Debris dangerous to public
- Poor housekeeping practices
- Impediment to emergency egress
- Improper material storage
- Fall protection
 - Missing
 - Inadequate

High-rise concrete general site safety

	Sample Size	Unprotected Edges
All Sites	181	78 (43%)

HRCO Observed Fall Hazard Violations

High-rise concrete worker falls

Site safety recommendations

- 1. Effect a consistent level of knowledge and understanding among DOB inspectors
 - Understand the latest NYC Building Code provisions pertinent to site safety practices
 - Promote inspection consistency

Site safety recommendations

- 2. Update and publish standard set of DOB inspection protocols
 - Establish thresholds for violations
 - Establish thresholds for Stop Work Orders

Items subject to further study

- Utilize outrigger systems
- Maintain unbroken edge protection
- Provide hoisting platforms
- Utilize cocoon systems

High-rise Concrete Special Inspection and Construction Quality

- Observed defects
 - Ineffective special inspection
 - Insufficient level of documentation
 - Improper concrete testing
 - Misplaced reinforcing
 - Poor quality bar fabrication

Special inspection and construction quality

	All Sites
Number of Active, Engineer-Inspected Site Observations	90
Number of Observed Quality Issues	39 (43%)
Number of Observed Critical Quality Issues	20 (22%)

HRCO-Observed Quality Defect Rate

- Critical construction quality defects
 - Improper placement of shear reinforcement
 - Insufficient numbers of installed shear stirrups
 - Improper column tie installation
 - Improper bar engagement
 - Severe bar congestion
 - Improper column splice configurations

- 67 sets of stirrups required per design
- 47 sets installed
- Shear capacity reduced by ~20%

- Two of 6 stirrups legs engaged
- Shear capacity reduced by ~33%

Quality recommendations

- Enforce NYC Special Inspection Rule
 - Strengthen outreach to industry regarding
 Special Inspection qualifications
 - All Special Inspectors must hold proper registrations or certifications

		Qualifications ^{1,2}		
<u>Special Inspection</u> <u>Category</u>	<u>2008</u> <u>Code</u> <u>Section</u>	Primary Inspector or Inspection Supervisor	Supplemental Inspector (Alternative 1) - under direct supervision of Inspection Supervisor	Supplemental Inspector (Alternative 2) - under direct supervision of Inspection Supervisor
<u>Concrete – Cast-in-</u> <u>place & Precast</u> <u>Note: Licensed</u> <u>concrete testing lab</u> <u>to perform sampling</u> <u>and testing of</u> <u>cylinders</u>	<u>BC 1704.4</u>	 <u>PE or RA; and</u> <u>1 year relevant</u> <u>experience</u> 	 <u>ACI</u> <u>Certification as</u> <u>Concrete</u> <u>Construction</u> <u>Special</u> <u>Inspector (ACI-CCSI)</u> <u>OR</u> <u>ICC</u> <u>Certification</u> <u>as Concrete</u> <u>Special</u> <u>Inspector</u> <u>(ICC-CSI)</u> <u>(ICC-CSI)</u> 	<u>ACI</u> <u>Certification</u> <u>as an</u> <u>Associate</u> <u>Concrete</u> <u>Construction</u> <u>Special</u> <u>Inspector</u> <u>(ACI-ACCSI)</u> <u>Note:</u> ACI- ACCSI only permitted to perform inspection under on-site
NYC Inspec	ction Rul	e 26, Eff. Jun	e 2008	PE, RA, ACI- CCSI, or ICC- CSI

Quality recommendations

- Provide inspector training
 - Maintain institutional knowledge
 - Promote uniform enforcement
 - Establish clear non-conformance

High-rise Concrete Worker Falls

Construction worker falls

- Observed defects
 - Insufficient leading edge protection
 - Insufficient interior opening protection
 - Improper or insufficient use of PFAS
 - Workers ignorant of tie-off requirements

Construction worker falls

- Leading causes of construction fatalities in 2006:
 - Falls: 442 out of 1,178 (38%)
 - Electrocutions: 179 (15%)
 - Struck by object: 206 (17%)
 - Caught, trapped: 97 (8%)

High-rise Concrete Worker Falls

High-rise Concrete Worker Falls

Construction worker falls

	All Projects	
Fall Hazards	43%	
Tie-off Compliance	33%	

HRCO Observed Violations

- Fall hazards
 - Unprotected perimeter edges
 - Unprotected interior openings
 - Improper barrier installation
- Tie-off violations
 - Improper use of PFAS
 - Failure to tie-off when required

Construction worker falls

- Reduce fall incidents
 - Site safety line of accountability:
 - Leads to owner (not to CM)
 - Non-compliant workers:
 - Contractor to document remedial actions taken
 - Implement fall hazard awareness campaign

Agenda

- Introduction
- Background
- Risk management: two common pitfalls
- Case studies
 - Miami Dade garage collapse
 - NYC Gap Analysis
- Questions, discussion

Discussion, questions

Discussion, questions

jlgconsultingllc